Computation in Cloud-Based Collaborative Applications in Software Industries

Neha Jain

Researcher, Govt. College, Rewa

ABSTRACT

This research considers the use of AWS technology with SAP applications and specific address business continuity and disaster recovery. A special emphasis is made on the advantages of the AWS solutions the elasticity, backup with automation and scaling up, the global redundancy, which makes traditional high availability and disaster recovery solutions obsolete. Issues such as integration issues and the cost aspect of integration are highlighted and followed by their solutions. This work shows how the AWS tools enhance the usability of SAP systems in terms of efficiency, extensibility, and fault tolerance in order to maintain business and operational sustainability. The identified information illustrates the numerous benefits obtained from the integration of AWS technologies in the modernization of SAP environments and improving SAP protection from vulnerabilities.

Keywords: AWS tools, SAP applications, high availability, disaster recovery, cloud integration, performance, scalability, best practices.

INTRODUCTION

SAP applications are an important part of enterprise resource planning, as they help an organization to cope with multifaceted business processes with the help of a set of integrated applications. They work in areas like finance, supply chain management and human resource and offer real-time data to aid in decision making.

Reliability of SAP systems plays significant role in running the operations of the firms and competitiveness. However, given their importance to processes, the high availability of the solution and problem solve disaster recovery system is necessary in order to prevent erosion of business continuity. It is crucial for SAP workloads to progress in today's dynamic business world and efficiently reduce the probability of failure in such applications by using AWS tools for these purposes.

HA guarantees that a system is, for the most part, available to the users and functioning when there are complications with the hardware or other hindrances. As it pertains to availability, it has features like use of backup hardware and course distribution to ensure full-service provision without interruption. Meanwhile, Disaster recovery (DR) is more inclined on the restoration of the systems or data in cases of a large-scale system failure or occurrence of disaster for instance natural catastrophes and sometimes cyber threats. It encompasses the backup solutions and the recovery strategies that would reduce the impact of data loss and system down time. As discussed, both HA and DR are crucial in keeping the business up and running; this means critical applications are up and running and recover quickly from a disruption.

AWS provides cloud solutions that give the high availability and disaster recovery for SAP applications. AWS Auto Scaling – is an Amazon EC2 Auto Scaling service, Multi-AZ Deployment – Amazon RDS, AWS Elastic Load Balancing. AWS Backup and AWS Elastic Disaster Recovery in specifics provide a quite comprehensive solution for data safety and system restoration. Using these tools, organisations can design SAP that is highly unavailable, reduce the time and costs for recovery in case of a disaster (Chevalier, 2020). AWS tools for the most part have a high level of compatibility with SAP applications to support application scalability at enterprise level.

Figure 1 SAP Disaster Recovery Solution Using CloudEndure (AWS, 2021)

Working in Load Balancing, AWS Elastic Load Balancing distributes the traffic that will not overload a particular component of an ECS. The focal DNS hosting service by Amazon is Amazon Route 53 which can handle DNS failover. These tools address some of the major issues are seen in HA by simplifying complex architectures, making systems less prone to downtime, and improving on system reliability.

Disaster Recovery in SAP Applications

Disaster recovery or DR plan for SAP systems therefore refers to contingency measures and plans that one puts in place for regaining system, data, and business functionality in the event of a disaster such as floods, terror attacks, virus

International Journal of Multidisciplinary Innovation and Research Methodology (IJMIRM) ISSN: 2960-2068, Volume 3, Issue 3, July-September, 2024, Available online at: https://ijmirm.com

attacks or system crashes among others. As for DR'S significance it is in the ability to reduce the potential of data loss, its capability to minimize downtime and make certain that the business is back on its feet.

DR plans allow organisations to restore essential SAP applications and sustain functionality in a short time span. This is important to safeguard data, security, and business continuity as well as to operate within the set legal requirements (Radeck, 2020). Organization's DR strategy establishes the procedures for pre-empting threats, managing, and avoiding hefty losses, and staying communicative organization-wide in the wake of disasters.

Common disaster recovery strategies for SAP applications

- Backup and Restore: Recovery capability as frequently as possible that allows for data and configuration backup in the event of a failure.
- Hot Standby: Keeping redundant systems, controlling ones as fully operational backup systems to the primary one that can be activated instantly if required.
- Cold Standby: Creating the second system that would start in turns and require a manual input for governing the whole network back to full power.
- Replication: By employing such solutions as data mirroring to ensure that there is the exact replica of data at other locations.
- Cloud-Based DR: Using of cloud services for effective and affordable DR plans with the help of automated backup and failover.

Figure 2 AWS Disaster Recovery Strategies & Steps for Security (Bacancy Technology, 2021)

Conclusion

While there are several complexities associated with AWS and coupling of AWS tools with SAP applications has potential for several complications, the overall benefits of AWS tools for high availability and DR that address many of the traditional solution complexities cannot be overlooked. AWS tools enable performance optimization, scalability and cost optimization solutions that improve the reliability and.

AWS tools guarantee that SAP applications remain up and running while quickly bouncing back from downtime, by such features as auto-scaling, automated backups, and global redundancy. Amidst such risks like integration complexity and control of costs, it is possible to follow the best practices including pre-consultations, over-planning, and regular staff training.

Maximizing the use of AWS tools for SAP applications not only leads to improved efficiency and less crash times but also embraces business recovery and operational readiness, thus preparing organizations to face expected or unexpected issues in their IT infrastructure systems. This study also provides that the AWS solutions are instrumental in the enhancement and the secure of the SAP infrastructure.

REFERENCES

- [1]. Santhosh Palavesh. (2019). The Role of Open Innovation and Crowdsourcing in Generating New Business Ideas and Concepts. International Journal for Research Publication and Seminar, 10(4), 137–147. https://doi.org/10.36676/jrps.v10.i4.1456
- [2]. Santosh Palavesh. (2021). Developing Business Concepts for Underserved Markets: Identifying and Addressing Unmet Needs in Niche or Emerging Markets. Innovative Research Thoughts, 7(3), 76–89. https://doi.org/10.36676/irt.v7.i3.1437
- [3]. Rinkesh
- [4]. Rinkesh Gajera. (2024). Comparative Analysis of Primavera P6 and Microsoft Project: Optimizing Schedule Management in Large-Scale Construction Projects. International Journal on Recent and Innovation Trends in Computing and Communication, 12(2), 961–972. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/11164
- [5]. Rinkesh Gajera, "Leveraging Procore for Improved Collaboration and Communication in Multi-Stakeholder Construction Projects", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 3, Issue 3, pp.47-51, May-June.2019
- [6]. Rinkesh Gajera , "Integrating Power Bi with Project Control Systems: Enhancing Real-Time Cost Tracking and Visualization in Construction", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 7, Issue 5, pp.154-160, September-October.2023
- [7]. URL: https://ijsrce.com/IJSRCE123761
- [8]. Rinkesh Gajera, "The Impact of Smartpm's Ai-Driven Analytics on Predicting and Mitigating Schedule Delays in Complex Infrastructure Projects", Int J Sci Res Sci Eng Technol, vol. 11, no. 5, pp. 116–122, Sep.

2024, Accessed: Oct. 02, 2024. [Online]. Available: https://ijsrset.com/index.php/home/article/view/IJSRSET24115101

- [9]. Kulkarni, Amol. "Digital Transformation with SAP Hana."International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169.
- [10]. Rinkesh Gajera. (2024). IMPROVING RESOURCE ALLOCATION AND LEVELING IN CONSTRUCTION PROJECTS: A COMPARATIVE STUDY OF AUTOMATED TOOLS IN PRIMAVERA P6 AND MICROSOFT PROJECT. International Journal of Communication Networks and Information Security (IJCNIS), 14(3), 409–414. Retrieved from https://ijcnis.org/index.php/ijcnis/article/view/7255
- [11]. Gajera, R. (2024). Enhancing risk management in construction projects: Integrating Monte Carlo simulation with Primavera risk analysis and PowerBI dashboards. Bulletin of Pure and Applied Sciences-Zoology, 43B(2s).
- [12]. Gajera, R. (2024). The role of machine learning in enhancing cost estimation accuracy: A study using historical data from project control software. Letters in High Energy Physics, 2024, 495-500.
- [13]. Rinkesh Gajera. (2024). The Impact of Cloud-Based Project Control Systems on Remote Team Collaboration and Project Performance in the Post-Covid Era. International Journal of Research and Review Techniques, 3(2), 57–69. Retrieved from https://ijrrt.com/index.php/ijrrt/article/view/204
- [14]. Rinkesh Gajera, 2023. Developing a Hybrid Approach: Combining Traditional and Agile Project Management Methodologies in Construction Using Modern Software Tools, ESP Journal of Engineering & Technology Advancements 3(3): 78-83.
- [15]. Paulraj, B. (2023). Enhancing Data Engineering Frameworks for Scalable Real-Time Marketing Solutions. Integrated Journal for Research in Arts and Humanities, 3(5), 309–315. https://doi.org/10.55544/ijrah.3.5.34
- [16]. Balachandar, P. (2020). Title of the article. International Journal of Scientific Research in Science, Engineering and Technology, 7(5), 401-410. https://doi.org/10.32628/IJSRSET23103132
- [17]. Neha Yadav, Vivek Singh, "Probabilistic Modeling of Workload Patterns for Capacity Planning in Data Center Environments" (2022). International Journal of Business Management and Visuals, ISSN: 3006-2705, 5(1), 42-48. https://ijbmv.com/index.php/home/article/view/73
- [18]. Vivek Singh, Neha Yadav. (2023). Optimizing Resource Allocation in Containerized Environments with AIdriven Performance Engineering. International Journal of Research Radicals in Multidisciplinary Fields, ISSN: 2960-043X, 2(2), 58–69. Retrieved from https://www.researchradicals.com/index.php/rr/article/view/83
- [19]. Balachandar Paulraj. (2024). LEVERAGING MACHINE LEARNING FOR IMPROVED SPAM DETECTION IN ONLINE NETWORKS. Universal Research Reports, 11(4), 258–273. https://doi.org/10.36676/urr.v11.i4.1364
- [20]. Paulraj, B. (2022). Building Resilient Data Ingestion Pipelines for Third-Party Vendor Data Integration. Journal for Research in Applied Sciences and Biotechnology, 1(1), 97–104. https://doi.org/10.55544/jrasb.1.1.14
- [21]. Paulraj, B. (2022). The Role of Data Engineering in Facilitating Ps5 Launch Success: A Case Study. International Journal on Recent and Innovation Trends in Computing and Communication, 10(11), 219– 225. https://doi.org/10.17762/ijritcc.v10i11.11145
- [22]. Paulraj, B. (2019). Automating resource management in big data environments to reduce operational costs. Tuijin Jishu/Journal of Propulsion Technology, 40(1). https://doi.org/10.52783/tjjpt.v40.i1.7905
- [23]. Balachandar Paulraj. (2021). Implementing Feature and Metric Stores for Machine Learning Models in the Gaming Industry. European Economic Letters (EEL), 11(1). Retrieved from https://www.eelet.org.uk/index.php/journal/article/view/1924
- [24]. Balachandar Paulraj. (2024). SCALABLE ETL PIPELINES FOR TELECOM BILLING SYSTEMS: A COMPARATIVE STUDY. Darpan International Research Analysis, 12(3), 555–573. https://doi.org/10.36676/dira.v12.i3.107
- [25]. Dipak Kumar Banerjee, Ashok Kumar, Kuldeep Sharma, Artificial Intelligence on Additive Manufacturing. (2024). International IT Journal of Research, ISSN: 3007-6706, 2(2), 186-189. https://itjournal.org/index.php/itjournal/article/view/37
- [26]. Ankur Mehra, Sachin Bhatt, Ashwini Shivarudra, Swethasri Kavuri, Balachandar Paulraj. (2024). Leveraging Machine Learning and Data Engineering for Enhanced Decision-Making in Enterprise Solutions. International Journal of Communication Networks and Information Security (IJCNIS), 16(2), 135–150. Retrieved from https://www.ijcnis.org/index.php/ijcnis/article/view/6989
- [27]. Bhatt, S., Shivarudra, A., Kavuri, S., Mehra, A., & Paulraj, B. (2024). Building scalable and secure data ecosystems for multi-cloud architectures. Letters in High Energy Physics, 2024(212).
- [28]. Balachandar Paulraj. (2024). Innovative Strategies for Optimizing Operational Efficiency in Tech-Driven Organizations. International Journal of Intelligent Systems and Applications in Engineering, 12(20s), 962 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6879

- [29]. Bharath Kumar Nagaraj, SivabalaselvamaniDhandapani, "Leveraging Natural Language Processing to Identify Relationships between Two Brain Regions such as Pre-Frontal Cortex and Posterior Cortex", Science Direct, Neuropsychologia, 28, 2023.
- [30]. Bhatt, S. (2020). Leveraging AWS tools for high availability and disaster recovery in SAP applications. International Journal of Scientific Research in Science, Engineering and Technology, 7(2), 482. https://doi.org/10.32628/IJSRSET2072122
- [31]. Bhatt, S. (2023). A comprehensive guide to SAP data center migrations: Techniques and case studies. International Journal of Scientific Research in Science, Engineering and Technology, 10(6), 346. https://doi.org/10.32628/IJSRSET2310630
- [32]. Kavuri, S., & Narne, S. (2020). Implementing effective SLO monitoring in high-volume data processing systems. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 5(6), 558. https://doi.org/10.32628/CSEIT206479
- [33]. Kavuri, S., & Narne, S. (2023). Improving performance of data extracts using window-based refresh strategies. International Journal of Scientific Research in Science, Engineering and Technology, 10(6), 359. https://doi.org/10.32628/IJSRSET2310631
- [34]. Kavuri, S. (2024). Automation in distributed shared memory testing for multi-processor systems. International Journal of Scientific Research in Science, Engineering and Technology, 12(4), 508. https://doi.org/10.32628/IJSRSET12411594
- [35]. Swethasri Kavuri, "Integrating Kubernetes Autoscaling for Cost Efficiency in Cloud Services", Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 5, pp. 480–502, Oct. 2024, doi: 10.32628/CSEIT241051038.
- [36]. Shah, Hitali. "Ripple Routing Protocol (RPL) for routing in Internet of Things." International Journal of Research Radicals in Multidisciplinary Fields, ISSN: 2960-043X 1, no. 2 (2022): 105-111.
- [37]. Hitali Shah.(2017). Built-in Testing for Component-Based Software Development. International Journal of New Media Studies: International Peer Reviewed Scholarly Indexed Journal, 4(2), 104–107. Retrieved from https://ijnms.com/index.php/ijnms/article/view/259
- [38]. Palak Raina, Hitali Shah. (2017). A New Transmission Scheme for MIMO OFDM using V Blast Architecture.Eduzone: International Peer Reviewed/Refereed Multidisciplinary Journal, 6(1), 31–38. Retrieved from https://www.eduzonejournal.com/index.php/eiprmj/article/view/628
- [39]. Swethasri Kavuri. (2024). Leveraging Data Pipelines for Operational Insights in Enterprise Software. International Journal of Intelligent Systems and Applications in Engineering, 12(10s), 661–682. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6981
- [40]. Swethasri Kavuri, "Advanced Debugging Techniques for Multi-Processor Communication in 5G Systems, IInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN: 2456-3307, Volume 9, Issue 5, pp.360-384, September-October-2023. Available at doi: https://doi.org/10.32628/CSEIT239071
- [41]. Mehra, A. (2023). Strategies for scaling EdTech startups in emerging markets. International Journal of Communication Networks and Information Security, 15(1), 259–274. https://ijcnis.org
- [42]. Mehra, A. (2021). The impact of public-private partnerships on global educational platforms. Journal of Informatics Education and Research, 1(3), 9–28. http://jier.org
- [43]. Ankur Mehra. (2019). Driving Growth in the Creator Economy through Strategic Content Partnerships. International Journal for Research Publication and Seminar, 10(2), 118–135. https://doi.org/10.36676/jrps.v10.i2.1519
- [44]. Mehra, A. (2023). Leveraging Data-Driven Insights to Enhance Market Share in the Media Industry. Journal for Research in Applied Sciences and Biotechnology, 2(3), 291–304. https://doi.org/10.55544/jrasb.2.3.37
- [45]. Ankur Mehra. (2022). Effective Team Management Strategies in Global Organizations. Universal Research Reports, 9(4), 409–425. https://doi.org/10.36676/urr.v9.i4.1363
- [46]. Mehra, A. (2023). Innovation in brand collaborations for digital media platforms. IJFANS International Journal of Food and Nutritional Sciences, 12(6), 231. https://doi.org/10.XXXX/xxxx
- [47]. Ankur Mehra. (2022). Effective Team Management Strategies in Global Organizations. Universal Research Reports, 9(4), 409–425. https://doi.org/10.36676/urr.v9.i4.1363
- [48]. Raina, Palak, and Hitali Shah."Data-Intensive Computing on Grid Computing Environment." International Journal of Open Publication and Exploration (IJOPE), ISSN: 3006-2853, Volume 6, Issue 1, January-June, 2018.
- [49]. Hitali Shah."Millimeter-Wave Mobile Communication for 5G". International Journal of Transcontinental Discoveries, ISSN: 3006-628X, vol. 5, no. 1, July 2018, pp. 68-74, https://internationaljournals.org/index.php/ijtd/article/view/102.
- [50]. Mehra, A. (2023). Leveraging Data-Driven Insights to Enhance Market Share in the Media Industry. Journal for Research in Applied Sciences and Biotechnology, 2(3), 291–304. https://doi.org/10.55544/jrasb.2.3.37
- [51]. Ankur Mehra. (2022). Effective Team Management Strategies in Global Organizations. Universal Research Reports, 9(4), 409–425. https://doi.org/10.36676/urr.v9.i4.1363

International Journal of Multidisciplinary Innovation and Research Methodology (IJMIRM) ISSN: 2960-2068, Volume 3, Issue 3, July-September, 2024, Available online at: https://ijmirm.com

- [52]. Ankur Mehra. (2022). The Role of Strategic Alliances in the Growth of the Creator Economy. European Economic Letters (EEL), 12(1). Retrieved from https://www.eelet.org.uk/index.php/journal/article/view/1925
- [53]. Kavuri, S., & Narne, S. (2020). Implementing effective SLO monitoring in high-volume data processing systems. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 6(2), 558. http://ijsrcseit.com
- [54]. Kavuri, S., & Narne, S. (2021). Improving performance of data extracts using window-based refresh strategies. International Journal of Scientific Research in Science, Engineering and Technology, 8(5), 359-377. https://doi.org/10.32628/IJSRSET
- [55]. Narne, S. (2023). Predictive analytics in early disease detection: Applying deep learning to electronic health records. African Journal of Biological Sciences, 5(1), 70–101. https://doi.org/10.48047/AFJBS.5.1.2023.7
- [56]. Swethasri Kavuri. (2024). Leveraging Data Pipelines for Operational Insights in Enterprise Software. International Journal of Intelligent Systems and Applications in Engineering, 12(10s), 661–682. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6981
- [57]. Narne, S. (2024). The impact of telemedicine adoption on patient satisfaction in major hospital chains. Bulletin of Pure and Applied Sciences-Zoology, 43B(2s).
- [58]. Narne, S. (2022). AI-driven drug discovery: Accelerating the development of novel therapeutics. International Journal on Recent and Innovation Trends in Computing and Communication, 10(9), 196. http://www.ijritcc.org