

Digital Health Information: Enhancing Patient Care and System Efficiency

Mohammed Nijr Alqhtani¹, Ayedh Abdulla A Album², Shuqayr Abadullah Almutairi³, Naif Turku Almutairi⁴, Afnan Sarray Alshammari⁵

¹Specialist Health Administration, PSMMC, Riyadh, Saudi Arabia

²Technician- Health Administration, PSMMC, Riyadh, Saudi Arabia

^{3,4}Health Informatics. Technician, PSMMC, Riyadh, Saudi Arabia

⁵Nursing Technician, PSMMC, Riyadh, Saudi Arabia

ABSTRACT

Aim: This review aims to explore the role of Digital Health Information (DHI) in enhancing patient care and improving healthcare system efficiency.

Methodology: A narrative review approach was adopted, analyzing recent literature, reports, and case studies on the integration of technologies such as Electronic Health Records (EHRs), telemedicine, mobile health (mHealth) applications, wearable devices, and AI-powered tools in healthcare systems.

Results: Findings indicate that DHI significantly improves clinical decision-making, treatment outcomes, patient engagement, and administrative processes. Technologies like EHRs and telemedicine have enabled accurate diagnoses, real-time monitoring, and continuity of care. Moreover, DHI facilitates data-driven public health responses through real-time surveillance and predictive analytics.

Conclusion: While digital health tools offer transformative benefits, their implementation faces challenges including data privacy concerns, cybersecurity risks, lack of interoperability, and infrastructural disparities—particularly in resource-limited settings. Addressing these barriers through policy reforms, strategic investments, and digital literacy initiatives is essential to ensure equitable access and maximize the impact of DHI.

Keywords: Digital Health Information, Electronic Health Records, Telemedicine, mHealth, AI in Healthcare, Patient-Centered Care

INTRODUCTION

It represents the broad field encompassing all uses of digital technologies—ranging from electronic health records (EHRs), mobile health apps, wearable devices, telehealth, remote monitoring, and even AI-powered diagnostic tools—to collect, store, analyze, and share health data for better healthcare delivery.(1) According to the World Health Organization's 2020–2025 global strategy, DHI is defined as “the field of knowledge and practice associated with any aspect of adopting digital technologies to improve health,” extending beyond traditional eHealth by including consumer-facing tools, Internet of Things (IoT) devices, big data analytics, and artificial intelligence. (2)The collected data and digital tools serve not only medical professionals but also empower patients by providing accessible, secure, and personalized healthcare services.

The journey of digital health information began long before the advent of modern computing—initially relying on handwritten paper records, which made the collection, storage, and retrieval of patient information cumbersome and error-prone. The late 20th century marked a paradigm shift: early electronic medical records started appearing in large hospitals in the 1970s and 1980s. By the 1990s, the development of interoperable EHR systems allowed for more comprehensive and sharable documentation.(3) The 2000s saw accelerating global adoption, encouraged by governmental policy and technological progress. In the past five years, the COVID-19 pandemic became a catalyst, pushing the adoption of telemedicine, patient portals, and advanced digital diagnostics into the mainstream. Recent innovations now enable remote care, real-time patient monitoring, predictive analytics, and highly integrated digital infrastructure, fundamentally changing how healthcare is delivered and experienced.(4)

The last five years have shown that digital health information is not just a convenience but a necessity for resilient, efficient, and equitable healthcare. With DHI, medical professionals gain real-time access to patient data, critical alerts, and comprehensive medical histories—leading to faster, safer, and more individualized care.(5) Hospitals and clinics have leveraged these advances to streamline operations, improve accuracy, cut costs, and reduce administrative loads. For patients, digital health platforms increase access, offer telehealth consultations regardless of location, and boost engagement through online records and personalized reminders.(6) Governments and public health authorities have

recognized DHI's potential to reach underserved populations, improve health outcomes, and manage public health crises through enhanced data analytics and surveillance capabilities. The digital transformation has become central to achieving Universal Health Coverage and Sustainable Development Goals, as outlined by strategic plans like WHO's Global Digital Health Strategy.(7)

The objective of this paper is to explore the role of Digital Health Information (DHI) in transforming patient care and improving healthcare system efficiency. It aims to examine the various components of DHI, assess its impact on clinical outcomes and administrative processes, and highlight key challenges to its widespread adoption.

TYPES AND COMPONENTS OF DIGITAL HEALTH INFORMATION SYSTEMS

Digital Health Information Systems (DHIS) are complex, multi-layered solutions designed to centralize, manage, and enhance the delivery of healthcare. Below is an overview—grounded in recent (2019–2024) research—of the main types and components, each uniquely contributing to modern healthcare's transformation.

Electronic Health Records (EHRs)

EHRs serve as the backbone of digital health, offering a systematic, digital collection of patient and population health data accessible in real time across healthcare settings. There are two major types: inpatient EHRs (for hospitals, with extensive interoperability needs), and outpatient EHRs (tailored for clinics and private practices).(8) Key components include patient health information, order entry systems, embedded decision support, strict security protocols, and communication tools. EHRs unify diverse data: demographics, histories, medications, labs, images, billing, and more. Their adoption has significantly reduced errors, improved continuity of care, enhanced data-driven decision-making, and enabled large-scale population health management.(9) Modern EHRs also play a crucial role in facilitating data exchange, quality improvement, and research initiatives, affecting everything from individual treatment to public health surveillance.(10)

Personal Health Records (PHRs)

A *Personal Health Record* is controlled by the individual and maintained outside of provider settings, allowing patients to actively manage their healthcare information. PHRs empower individuals—particularly those with chronic conditions—to track symptoms, medications, lab results, and communicate directly with clinicians.(11) Studies indicate performance expectancy, ease of use, and provider encouragement strongly influence adoption, but overall usage is still modest, especially among older adults. Nonetheless, PHRs improve patient engagement, medication adherence, and chronic disease management, and are increasingly linked to clinical portals for a fuller health picture.(12) These systems are associated with increased patient satisfaction, early detection of disease, and cost-effectiveness, particularly when efforts support digital literacy and tailored integration.(13)

Health Information Exchange (HIE)

HIE systems digitally connect disparate healthcare providers to enable the secure, efficient sharing of patient information. HIE facilitates care coordination, particularly during transitions between providers or locations, and is increasingly a linchpin in public health preparedness (notably highlighted during pandemic responses).(14) The last five years saw major expansion, driven by government support, technological advances (e.g., FHIR interoperability standards), and the rise of both public (statewide) and private (integrated health network) HIEs. Outcomes include fewer duplicate tests, reduced errors, faster treatments, and improved surveillance in both clinical and public health realms.(15) However, ensuring privacy, achieving seamless interoperability, and addressing funding sustainability remain ongoing challenges.

Clinical Decision Support Systems (CDSS)

CDSS are tools—often integrated within EHRs—that provide real-time, evidence-based clinical guidance to providers at the point of care. (16) These systems use rules, AI, and advanced analytics to flag drug interactions, recommend treatments, estimate risk scores, and suggest diagnostic paths. Recent advances focus on machine learning and patient-centered design, as well as integration with patient data and clinical workflows.(17) CDSS have demonstrated significant promise in reducing errors, improving outcomes (especially for chronic diseases), and optimizing resource use. However, integration difficulties, data quality, clinician acceptance, and maintainability are noted barriers; transparency and usability improvements are areas of innovation.(18)

Telemedicine platforms

Telemedicine has rapidly expanded since 2019, moving from niche services to a mainstream solution for both acute and chronic care. Platforms now support video, audio, chat, file sharing, remote monitoring, and even e-prescriptions—all within regulatory and privacy frameworks.(19) This technology has dramatically increased healthcare accessibility, especially for rural and underserved populations. India's eSanjeevani platform, for example, has delivered care to hundreds of millions by integrating telemedicine into primary health centres and providing nationwide connections between providers and patients, as well as between providers themselves.(20) The global market features platforms like Teladoc Health, which use AI and smartphone integration to enhance care delivery, patient satisfaction, and cost-

effectiveness. The homecare market for telemedicine is growing rapidly, driven by governmental policy, public trust, and improved infrastructure; however, challenges such as reimbursement, training, and the digital divide remain.

Mobile Health (mHealth) apps and wearable devices

mHealth apps and wearables represent the most patient-facing aspect of DHIS, supporting real-time tracking, disease management, and patient/provider communication.(21) Smart devices (e.g., fitness trackers, smartwatches, sensor patches) monitor vitals, physical activity, and chronic diseases, sending data directly to EHRs or provider dashboards. Post-pandemic, these tools have become near-ubiquitous, enabling preventive care, early diagnosis, and personalized interventions.(22) Clinical studies note improved engagement, accurate measurements, and robust privacy protocols, though mHealth apps vary widely in evidence quality and cost-effectiveness.(23) Emerging trends include “smartphonization” of wearables (embedding sensors and displays into phones) and broader integration into clinical workflows for seamless, data-driven care. A critical gap remains: ensuring inclusivity for women’s health and enhancing the rigor of supporting data.

Digital Health Information Systems are multifaceted and rapidly evolving. From the comprehensive, clinician-centric EHR to personalized mHealth devices, each component plays a unique role in making healthcare more accessible, efficient, and patient-centered. Recent years have cemented their value, yet continued progress requires tackling interoperability, digital literacy, inclusivity, and data privacy. Collectively, these systems embody the future—placing information, analytics, and connection at the heart of healthcare.

IMPACT ON PATIENT CARE

Improved diagnosis and treatment accuracy

Digital health information has raised the bar for diagnostic precision and tailored treatment. Real-time access to electronic health records (EHRs), telemedicine imaging, and AI-driven decision support systems mean physicians can quickly review comprehensive patient histories, flag drug interactions, and interpret diagnostic images remotely with high reliability.(23) Studies confirm that remote patient imaging and telemedicine platforms enable accurate and timely interventions, especially in chronic and post-operative care, reducing hospital readmissions and enabling specialists to consult efficiently across distances.(24)

Enhanced patient engagement and self-management

Patient portals, mHealth apps, and wearable devices have ushered in a new era of active patient participation. Individuals now routinely track symptoms, vital signs, and medication adherence from home.(24) This shift strengthens engagement, improves medication compliance, and helps patients detect health issues early. The movement towards “responsibilization”—where patients use self-monitoring technologies—gives them greater control in decision-making and fosters ongoing partnerships between patients and providers, although not all patients experience this as empowering.(25)

Reduction in medical errors

The integration of digital systems decreases medication and transcription errors and automates alerts for critical clinical events. By embedding safety checks in EHRs and decision support systems, hospitals have documented reductions in avoidable mistakes and adverse events.(26) Automated reminders for both patients and clinicians also prevent omissions in care.

Real-time monitoring and remote care

Digital health enables proactive, real-time oversight of at-risk patients. Remote monitoring systems, smart wearables, and tele-consults allow clinicians to adjust treatments promptly and intervene early in emergencies, which is particularly significant for chronic disease management and rural care. (27) Data flows directly to provider dashboards, ensuring decisions are based on the latest patient status.

IMPACT ON HEALTHCARE SYSTEM EFFICIENCY

Streamlining administrative workflows

Digital health technologies—such as Electronic Health Records (EHRs), automation tools, and AI-driven systems—have demonstrably improved healthcare operational efficiency. These systems reduce paperwork, streamline billing, and enable real-time access to patient data, freeing up staff to focus more on direct patient care.(28) Studies confirm that healthcare administrators find processes such as registration, reporting, and compliance are significantly expedited through digital solutions.(29)

Better resource allocation and cost savings

Predictive analytics powered by digital health platforms allow organizations to accurately forecast patient surges, optimize staffing, and manage supplies, leading to more efficient use of resources and lower operational costs.(30)

Hospitals and clinics leveraging these technologies document reductions in unnecessary ER visits, shorter hospital stays, and successful shifts toward preventive care, outcomes that support both better health and cost-effectiveness.

Facilitating inter-professional communication

Health Information Exchanges (HIEs) and integrated digital collaboration platforms break down traditional silos between healthcare professionals, enabling seamless, secure sharing of patient data across multiple providers and care settings.(30) This interconnectedness fosters multidisciplinary teamwork by ensuring that all involved clinicians have access to up-to-date health information, lab results, and treatment plans—thereby reducing communication delays and errors.(31) Enhanced interoperability also facilitates coordinated care transitions, such as from hospital to primary care, improving continuity and patient safety. These platforms support virtual case conferences and collaborative decision-making, accelerating the delivery of comprehensive care and elevating overall system responsiveness.(32)

Reduction in duplicate tests and services

Centralized digital health records enable providers to view historical test results, imaging, and treatments regardless of where they were performed, significantly reducing repetitive diagnostics that add unnecessary costs and burden patients with redundant procedures.(33) This visibility not only enhances clinical efficiency but also lessens patient discomfort and exposure to potentially harmful procedures such as excess radiation from repeated imaging. The elimination of duplicate services contributes to streamlined care pathways, speeds up treatment planning, and decreases overall healthcare expenditures. Furthermore, it fosters greater trust and satisfaction among patients by avoiding delays and confusion caused by conflicting or repetitive clinical orders.

Data analytics for public health and policy decisions

The wealth of data generated by digital health information systems provides a powerful foundation for public health surveillance, outbreak prediction, and population health management.(34) Leveraging big data analytics, health authorities and policymakers can identify emerging disease trends, regional health disparities, and the effectiveness of interventions in near real-time. These insights inform evidence-based policy-making and resource allocation that are more responsive to community needs.(35) The COVID-19 pandemic underscored the critical role of such infrastructure; digital tools enabled rapid case tracking, contact tracing, and vaccination monitoring. Beyond infectious diseases, ongoing analytics support chronic disease surveillance, health behavior analysis, and social determinants of health assessments, ultimately contributing to more resilient and adaptive health systems capable of proactive, rather than reactive, responses.

CHALLENGES AND BARRIERS

Data privacy and cybersecurity issues

The rapid digitization of healthcare has put data privacy and cybersecurity at the forefront of system concerns. Healthcare systems have been frequent targets for cyberattacks, with breaches in 2024 reaching unprecedented levels—affecting nearly 70% of the U.S. population alone.(36) The most common threats stem from ransomware, phishing, misconfigured cloud environments, and insider misuse. Systemic vulnerabilities persist due to outdated IT infrastructure, inconsistent definitions of sensitive data, and a lack of harmonized global regulations. Regulatory frameworks like GDPR, CCPA, and India's new Digital Personal Data Protection Act strive to protect patient information, but differences in enforcement, technological adoption, and semantic discrepancies create real gaps. Emerging solutions—such as AI-driven breach detection, blockchain for data integrity, automated compliance, and zero-trust security architectures—are showing promise, yet sustained investment, international collaboration, and upskilling are required to close privacy and security loopholes. (37)

Interoperability limitations

Fragmentation is a persistent challenge: disparate EHR systems, legacy databases, and proprietary platforms often do not “speak the same language.” This lack of standardization and the presence of data silos mean that patient information is not shared efficiently, risking incomplete care, duplication of tests, and administrative errors. (38) Regulatory compliance (e.g., HIPAA, GDPR) introduces strict sharing requirements that sometimes stifle cross-institutional data exchange. Although frameworks like FHIR and the 21st Century Cures Act in the U.S. are pushing for greater data fluidity, technological complexity, cost constraints, and inconsistent formats remain major hurdles.(39) Solving these issues requires standardized data exchange protocols, strong governance, and scalable, secure infrastructure.

Technological infrastructure gaps

A digital divide remains stark, especially in developing countries and rural regions—where access to broadband, stable power, and modern medical devices is often unreliable. Even in countries with robust healthcare sectors, legacy systems and underinvestment impede modernization; up to two-thirds of organizations cite regular problems with device connectivity and telehealth reliability, leading to delays in care. As device ecosystems expand, the complexity of integration increases, making remote support and real-time data sharing even more challenging.(40) Investments in

basic and advanced infrastructure, ongoing capacity building, and future-proofing strategies are critical to prevent further disparities in digital health outcomes.

Legal and regulatory concerns

Legal ambiguities and regulatory gaps create uncertainty for both providers and patients. Many countries still lack comprehensive, up-to-date legislation addressing digital healthcare, leaving issues like informed consent, liability, data portability, and cross-border data sharing unresolved.(41) In places where regulatory frameworks do exist, enforcement can be patchy or biased; for example, some laws allow government exemptions that can undermine citizen rights. The rapid evolution of digital technologies routinely outpaces policy development, producing a fragmented landscape punctuated by ethical dilemmas and inequities.(42) To overcome these hurdles, experts advocate for integrated, adaptable legislative approaches, transparent policy-making, and focused efforts to build public trust in digital health solutions.

GLOBAL PERSPECTIVES AND CASE EXAMPLES

Digital health adoption varies significantly between developed and developing countries, influenced by infrastructure, policy, and resource availability. Developed nations show widespread integration of EHRs, AI, and telemedicine, while developing countries face challenges like limited connectivity and funding. **Table 1** presents a comparative overview of digital health implementation in selected developed and developing countries.

Table-1: Comparative Analysis of Digital Health Implementation: Developed vs Developing Countries.

Sr. No	Country/Region	System/Initiative	Key Features & Innovations	Challenges & Insights	Ref.
1.	United States	Epic (EHR)	Advanced integration, streamlined workflows, remote/mobile access, improved clinical documentation and efficiency, enhanced patient safety with medication tracking.	Workflow complexity, usability issues, some negative perceptions among providers, variable patient engagement.	(43)
2.		Cerner (EHR)	Focus on clinical care, efficiency, improvement in hospital operation metrics, broad adoption in acute and community care.	Variation in quality/safety performance among hospitals, need for custom workflows.	(44)
3.		General (Developed)	Mature digital health infrastructure, broad EHR coverage, high interoperability, large investment in data analytics.	Cybersecurity risks, data privacy, usability, disparities in rural regions.	(45)
4.	United Kingdom	NHS Digital	Unified national digital strategy, digital maturity assessments, EHRs, health analytics, real-time data exchange, patient-facing digital services (including telehealth and apps).	Variation in digital maturity, slow transition in acute care, workforce adaptation challenges, privacy/security.	(47)
5.		Digital Health Living Lab (UK)	Co-creation approach, involves community stakeholders to ideate, develop, and evaluate digital health solutions in real-life settings.	Sustainability, engaging diverse user groups, integrating innovative pilots at scale.	(48)
6.	India	Ayushman Bharat Digital Mission (ABDM)	National program to digitize health records, universal Health ID (ABHA), integration of public/private sector, mobile-first approach, enabled COVID vaccination tracking (Co-WIN), focus on universal health coverage.	Large digital divide (urban vs rural/access, literacy), privacy/security concerns, need for capacity building and awareness.	(46)
7.		Digital Health Revolution	Government-led digital transformation, adoption of mobile, 5G, artificial intelligence, leveraging public-private models to extend access into resource-limited settings.	Limited broadband/power in rural areas, fragmented adoption, ongoing need for regulatory development and	(49)

				interoperability.	
8.	Sub-Saharan Africa	DHIS2, OpenMRS, Baobab, Smartcare	Community and public health focus, mobile-first innovations, adaptive for limited infrastructure, strong donor involvement.	Infrastructure gaps, lack of national strategy, workforce shortages, funding dependency.	(50)
9.	General (Developing)	Case Examples & Policy	Low/middle-income countries use digital health for basic clinical care, pandemic response, mobile health (mHealth) programs.	Interoperability, limited infrastructure, data privacy and security, sustainability, digital literacy gaps.	(51)

CONCLUSION

Digital Health Information (DHI) is reshaping the global healthcare landscape by enhancing clinical precision, empowering patients, and streamlining system operations. From Electronic Health Records and mobile health apps to telemedicine and AI-driven analytics, these technologies contribute to improved patient outcomes, better resource management, and more responsive public health systems. While the benefits are clear, challenges such as data privacy, interoperability, and infrastructure disparities must be strategically addressed to ensure equitable access and sustainability. As countries continue investing in digital health, collaborative efforts across policy, technology, and education will be vital to realizing its full potential for both patients and healthcare systems worldwide.

REFERENCES

- [1]. Ronquillo Y, Meyers A, Korvek SJ. Digital Health. 2025.
- [2]. Dileep VN. The coming of age of digital technologies in global health within the Indian context: a review. *Journal of the Egyptian Public Health Association*. 2024 Sep 9;99(1):22.
- [3]. Ganesan B, Tong RKY. Historical overview and the evolution of digital health. In: *Digital Technology in Public Health and Rehabilitation Care*. Elsevier; 2025. p. 3–18.
- [4]. Abernethy A, Adams L, Barrett M, Bechtel C, Brennan P, Butte A, et al. The Promise of Digital Health: Then, Now, and the Future. *NAM Perspectives*. 2022 Jun 27;6(22).
- [5]. Kasoju N, Remya NS, Sasi R, Sujesh S, Soman B, Kesavadas C, et al. Digital health: trends, opportunities and challenges in medical devices, pharma and bio-technology. *CSI Transactions on ICT*. 2023 Apr 11;11(1):11–30.
- [6]. Chidambaram S, Jain B, Jain U, Mwavu R, Baru R, Thomas B, et al. An introduction to digital determinants of health. *PLOS Digital Health*. 2024 Jan 4;3(1):e0000346.
- [7]. Stoumpos AI, Kitsios F, Talias MA. Digital Transformation in Healthcare: Technology Acceptance and Its Applications. *Int J Environ Res Public Health*. 2023 Feb 15;20(4):3407.
- [8]. Chishtie J, Sapiro N, Wiebe N, Rabatach L, Lorenzetti D, Leung AA, et al. Use of Epic Electronic Health Record System for Health Care Research: Scoping Review. *J Med Internet Res*. 2023 Dec 15;25:e51003.
- [9]. Aldosari B. Patients' safety in the era of EMR/EHR automation. *Inform Med Unlocked*. 2017;9:230–3.
- [10]. Zhang X, Saltman R. Impact of Electronic Health Record Interoperability on Telehealth Service Outcomes. *JMIR Med Inform*. 2022 Jan 11;10(1):e31837.
- [11]. Abebe SA, Endehabtu BF, Walle AD, Hailu DT, Yeshaneh AT, Dres EA, et al. Intention to use personal health record system and its predictors among chronic patients enrolled at public hospitals in Bahir Dar city, northwest Ethiopia: using modified UTAUT2 model. *Front Med (Lausanne)*. 2024 Sep 4;11.
- [12]. Sarwal D, Gupta V. Personal Health Record. 2025.
- [13]. Osovskaya I, Blandford A, Potts HW. A systematic review of the effect of personal health records on patient activation. *Digit Health*. 2025 Jan 22;11.
- [14]. Holmgren AJ, Esdar M, Hüser J, Coutinho-Almeida J. Health Information Exchange: Understanding the Policy Landscape and Future of Data Interoperability. *Yearb Med Inform*. 2023 Aug 6;32(01):184–94.
- [15]. Walker DM, Tarver WL, Jonnalagadda P, Rambom L, Ford EW, Rahurkar S. Perspectives on Challenges and Opportunities for Interoperability: Findings From Key Informant Interviews With Stakeholders in Ohio. *JMIR Med Inform*. 2023 Feb 24;11:e43848.
- [16]. Chen Z, Liang N, Zhang H, Li H, Yang Y, Zong X, et al. Harnessing the power of clinical decision support systems: challenges and opportunities. *Open Heart*. 2023 Nov 28;10(2):e002432.
- [17]. Grechuta K, Shokouh P, Alhussein A, Müller-Wieland D, Meyerhoff J, Gilbert J, et al. Benefits of Clinical Decision Support Systems for the Management of Noncommunicable Chronic Diseases: Targeted Literature Review. *Interact J Med Res*. 2024 Nov 27;13:e58036.
- [18]. Bayor AA, Li J, Yang IA, Varnfield M. Designing Clinical Decision Support Systems (CDSS)—A User-Centered Lens of the Design Characteristics, Challenges, and Implications: Systematic Review. *J Med Internet Res*. 2025 Jun 20;27:e63733–e63733.

- [19]. Moturu D, Potineni RB, Rayana S, Jahangir S, Stella, Grandhi KS, et al. Detection of Hemodynamic Events during the Implementation of a Novel Indigenous Tele ICU System-An Observational Study. *J Adv Med Med Res.* 2024 Nov 2;36(11):208–14.
- [20]. Dastidar BG, Jani AR, Suri S, Nagaraja VH. Reimagining India's National Telemedicine Service to improve access to care. *The Lancet Regional Health - Southeast Asia.* 2024 Nov;30:100480.
- [21]. Hong W. Advances and Opportunities of Mobile Health in the Postpandemic Era: Smartphonization of Wearable Devices and Wearable Deviceization of Smartphones. *JMIR Mhealth Uhealth.* 2024 Jan 22;12:e48803–e48803.
- [22]. Chauhan GK, Vavken P, Jacob C. Mobile Apps and Wearable Devices for Cardiovascular Health: Narrative Review. *JMIR Mhealth Uhealth.* 2025 Apr 4;13:e65782–e65782.
- [23]. Lee EWJ, Bao H, Wu YS, Wang MP, Wong YJ, Viswanath K. Examining health apps and wearable use in improving physical and mental well-being across U.S., China, and Singapore. *Sci Rep.* 2024 May 11;14(1):10779.
- [24]. Haleem A, Javaid M, Singh RP, Suman R. Telemedicine for healthcare: Capabilities, features, barriers, and applications. *Sensors International.* 2021;2:100117.
- [25]. Meier E, Rigter T, Schijven MP, van den Hoven M, Bak MAR. The impact of digital health technologies on moral responsibility: a scoping review. *Med Health Care Philos.* 2025 Mar 30;28(1):17–31.
- [26]. Woods L, Eden R, Green D, Pearce A, Donovan R, McNeil K, et al. Impact of digital health on the quadruple aims of healthcare: A correlational and longitudinal study (Digimat Study). *Int J Med Inform.* 2024 Sep;189:105528.
- [27]. Rana RK, Kapoor N, Kumar D, Verma M, Taneja G. Digital Health Revolution in India: Transforming Health and Medicine. *Indian Journal of Community Medicine.* 2024 Dec;49(Suppl 2):S205–9.
- [28]. Mensah NK, Adzakpah G, Kissi J, Boadu RO, Acheampongmaa QK, Taylor-Abdulai H, et al. Perceived impact of digital health technology on health professionals and their work: A qualitative study in Southern Ghana. *Digit Health.* 2023 Jan 6;9.
- [29]. Sinha R. The role and impact of new technologies on healthcare systems. *Discover Health Systems.* 2024 Nov 14;3(1):96.
- [30]. Maleki Varnosfaderani S, Forouzanfar M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. *Bioengineering.* 2024 Mar 29;11(4):337.
- [31]. Nordmann K, Sauter S, Möbius-Lerch P, Redlich MC, Schaller M, Fischer F. Conceptualizing Interprofessional Digital Communication and Collaboration in Health Care: Protocol for a Scoping Review. *JMIR Res Protoc.* 2023 Jun 26;12:e45179.
- [32]. Yoshimoto T, Nawa N, Uemura M, Sakano T, Fujiwara T. The impact of interprofessional communication through ICT on health outcomes of older adults receiving home care in Japan – A retrospective cohort study. *J Gen Fam Med.* 2022 Jul 20;23(4):233–40.
- [33]. Wu H, LaRue EM. Linking the health data system in the U.S.: Challenges to the benefits. *Int J Nurs Sci.* 2017 Oct;4(4):410–7.
- [34]. Katapally TR, Ibrahim ST. Digital Health Dashboards for Decision-Making to Enable Rapid Responses During Public Health Crises: Replicable and Scalable Methodology. *JMIR Res Protoc.* 2023 Jun 30;12:e46810.
- [35]. Gunasekeran DV, Tseng RMWW, Tham YC, Wong TY. Applications of digital health for public health responses to COVID-19: a systematic scoping review of artificial intelligence, telehealth and related technologies. *NPJ Digit Med.* 2021 Feb 26;4(1):40.
- [36]. Conduah AK, Ofoe S, Siaw-Marfo D. Data privacy in healthcare: Global challenges and solutions. *Digit Health.* 2025 May 4;11.
- [37]. Sood A, Mishra D, Surya V, Singh H, Sundaresan R, Pal D, et al. Challenges and recommendations for enhancing digital data protection in Indian Medical Research and Healthcare Sector. *NPJ Digit Med.* 2025 Jan 22;8(1):48.
- [38]. Livieri G, Mangina E, Protopapadakis ED, Panayiotou AG. The gaps and challenges in digital health technology use as perceived by patients: a scoping review and narrative meta-synthesis. *Front Digit Health.* 2025 Mar 27;7.
- [39]. Majumder MA, Guerrini CJ, Bollinger JM, Cook-Deegan R, McGuire AL. Sharing data under the 21st Century Cures Act. *Genetics in Medicine.* 2017 Dec;19(12):1289–94.
- [40]. Inampudi S, Rajkumar E, Gopi A, Vany Mol KS, Sruthi KS. Barriers to implementation of digital transformation in the Indian health sector: a systematic review. *Humanit Soc Sci Commun.* 2024 May 17;11(1):632.
- [41]. Jain D. Regulation of Digital Healthcare in India: Ethical and Legal Challenges. *Healthcare.* 2023 Mar 21;11(6):911.
- [42]. Teng Y, Song Y. Beyond legislation and technological design: The importance and implications of institutional trust for privacy issues of digital contact tracing. *Front Digit Health.* 2022 Sep 27;4.
- [43]. Taneja S, Vanderhout S, Heidebrecht CL, Nie JX, Seuren L, Giri R, et al. Exploring the impact of an electronic health record implementation on user experiences across clinical programmes in a large Canadian community hospital: a qualitative study. *BMJ Open.* 2025 Apr 30;15(4):e095771.
- [44]. Beauvais B, Kruse CS, Fulton L, Shanmugam R, Ramamonjiarivelo Z, Brooks M. Association of Electronic Health Record Vendors With Hospital Financial and Quality Performance: Retrospective Data Analysis. *J Med Internet Res.* 2021 Apr 14;23(4):e23961.

- [45]. Ratwani RM, Savage E, Will A, Arnold R, Khairat S, Miller K, et al. A usability and safety analysis of electronic health records: a multi-center study. *Journal of the American Medical Informatics Association*. 2018 Sep 1;25(9):1197–201.
- [46]. Johnston DS. Digital maturity: are we ready to use technology in the NHS? *Future Healthc J*. 2017 Oct;4(3):189–92.
- [47]. Fotis T, Kioskli K, Sundaralingam A, Fasihi A, Mouratidis H. Co-creation in a digital health living lab: A case study. *Front Public Health*. 2023 Jan 17;10.
- [48]. Arjun MC, Poorvikha S, Kurpad A V, Thomas T. Knowledge, Attitude and Practice about Ayushman Bharat Digital Mission and Digital Health among hospital patients. *J Family Med Prim Care*. 2024 Oct;13(10):4476–81.
- [49]. Rana RK, Kapoor N, Kumar D, Verma M, Taneja G. Digital Health Revolution in India: Transforming Health and Medicine. *Indian Journal of Community Medicine*. 2024 Dec;49(Suppl 2):S205–9.
- [50]. Luna D, Almerares A, Mayan JC, González Bernaldo de Quirós F, Otero C. Health Informatics in Developing Countries: Going beyond Pilot Practices to Sustainable Implementations: A Review of the Current Challenges. *Healthc Inform Res*. 2014;20(1):3.
- [51]. Sylla B, Ismaila O, Diallo G. 25 Years of Digital Health Toward Universal Health Coverage in Low- and Middle-Income Countries: Rapid Systematic Review. *J Med Internet Res*. 2025 May 29;27:e59042.