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ABSTRACT 

 

In computer vision, anomaly detection (AD) is a challenging task. AD presents additional difficulties, especially in 

the realm of medical imaging, for several reasons, one of which being the dearth of ground truth (annotated) data. 

AD models built on generative adversarial networks (GANs) have advanced significantly in the last several years. 

Their usefulness in biological imaging is still not well understood, though. In this study, we provide an overview of 

the use of GANs for AD and a detailed analysis of the difficulties faced in implementing the most advanced GAN-

based AD techniques for biomedical imaging. Additionally, we have explicitly examined the benefits and constraints 

of AD approaches on medical image datasets, conducting tests on 2 medical imaging datasets from various 

modalities, organs, and tissues using 3 AD methods. We examined the outcomes from the perspectives of both data 

and models, given the strikingly disparate results obtained in these studies. The outcomes demonstrated that no 

technique could consistently identify anomalies in medical imaging. A few of the phenomena that have a significant 

influence on the AD models' performance include the quantity of training samples, the subtlety of the anomaly, and 

the anomaly's distribution throughout the images. We also anticipate significant research paths and offer 

recommendations for the application of AD models in medical imaging. 
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INTRODUCTION 

 

Finding data samples (also known as out-of-distribution samples) that do not fit the overall data distribution is the main 

goal of anomaly detection (AD) [1]. Anomalies can arise from a multitude of reasons, such as noise in the data collection 

process or novel or undiscovered elements in the context that was collected [2]. Finding structural and functional 

abnormalities in exposed organs and tissues is the general goal of medical imaging, or AD. However, challenges arise 

because gathering annotations, or labels, is often costly, time-consuming, and impossible without a reliable ground truth 

[3]. Because of this, unsupervised and semi-supervised techniques have drawn a lot of interest in medical imaging in recent 

years. A more recent development in unsupervised learning techniques is the ability of generative adversarial networks 

(GANs) [4] to estimate the distribution of extremely complicated medical imaging data. Therefore, in an ideal world, these 

techniques would not be significantly hampered by imbalanced datasets, a known problem in the field of medical imaging 

[5]. Because of these qualities, GANs have become a well-reputed option for creating AD techniques in applications 

involving medical imaging. 

Currently, one of the most widely used unsupervised AD techniques is GAN-based AD [6]. The primary function of GANs 

is to learn a dataset's distribution, which enables them to create new samples that are difficult for the discriminator to 

distinguish from the original dataset. But in GAN architectures, the discriminator plays a more important role in anomaly 

detection than the generator, along with structural alterations. GAN-based AD has been created in numerous studies [7] 

using natural datasets and medical pictures. Determining the reliability of contemporary unsupervised AD methods—

particularly GAN-based AD—on medical images with varying abnormalities, pathologies, modalities, and resolutions is a 

complex and tough task, despite their partial success and promising outcomes. However, it is challenging to evaluate how 

well these techniques function in terms of identifying different anomalies in medical imaging and selecting the most 

effective technique. This is due to the fact that the majority of these techniques have been tried and evaluated on real 

datasets or on medical imaging with particular pathologies, modalities, and resolutions. The goal of this work is to 

demonstrate and contrast the effectiveness of current unsupervised AD, particularly GAN-based AD for medical image 

datasets. 
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ANOMALY DETECTION 

 

For several years, data mining and statistics experts have been drawn to the dynamic study field of finding data outliers, 

also known as anomalies, novelties, and out-of-distribution data [1], [8]. The main causes of this are the difficulties in the 

AD process as well as the important knowledge and insights that can be gained from dataset abnormalities [9].Data points 

that do not fit into the distribution of the majority of the dataset that is known to be normal are considered anomalies in 

technical terms [9]. Furthermore, it can be challenging to classify anomalous data samples as normal because they are 

typically uncommon and unfamiliar. In other words, normal samples are thought to all approximately follow the same 

distribution, whereas anomalous samples are thought to originate from distinct distributions. For various datasets, like 

medical images, this assumption might not always be true. Finding aberrant data in medical imaging is a difficult endeavour 

because there is a wide range of normal cases. To be more precise, an AD model experiences reduced sensitivity due to a 

high number of false positive samples, as well as lower specificity due to a high number of false positive samples. 

Notwithstanding the various obstacles, possessing a model capable of identifying irregularities or novelties in medical 

images can be crucial in offering a decision support system for the identification of unidentified or uncommon illnesses 

[10]. 

Conventional unsupervised techniques include One-Class Support Vector Machines (OC-SVM) [12] and Support Vector 

Data Description (SVDD) [11]. These techniques look for a hyperplane with normal training samples in order to identify 

rich normal features [13]. On complex, high-dimensional datasets, however, their performance is said to suffer [14]. While 

it may not always be the best method, choosing features based on expert judgement can help reduce the dimensionality of 

data [15]. Alternatively, different feature extraction and selection techniques, such as principal component analysis (PCA) 

[16], multidimensional scaling (MDS) [17], and deep auto-encoder networks, can be applied. Without requiring any prior 

knowledge from human experts, end-to-end training of more discriminative feature representations from the usual input 

photos can be accomplished through the application of deep learning (DL)-based AD approaches. Due to these essential 

characteristics, DL-based AD techniques are more resilient and generalizable [15], especially when dealing with high 

dimensionality datasets like medical images, where manually developed feature engineering pipelines are insufficient and 

excessively time-consuming. 

The most widely used deep AD technique depends on understanding the distribution of normal images and deriving latent 

representations from them in order to accurately rebuild normal images [20]. Only normal images can be reconstructed 

using techniques such autoencoders (AEs) [21], [22], variational autoencoders (VAEs) [23], [24], [25], and GANs [26], 

[27], [28]. As a result, poor reconstruction is anticipated for anomalous photos. In order to better identify anomalous 

samples, information from latent space [30], [31], and discriminator [32] can also be used. As a result, the reconstructed 

error can be thought of as the anomaly score [29].Reconstruction-based AD techniques can be troubled by issues such mode 

collapse, instability, non-convergence, and computational expense for picture reconstruction, while being popular and 

intuitive as well [33].  

OVERVIEW OF GAN-BASED 

 

In order to produce new samples that convincingly appear to come from the same (source/input) dataset, generative 

modeling is an unsupervised machine learning approach that automatically finds and learns the underlying patterns in the 

source dataset [32]. GANs are a subset of generative modeling techniques that are built on convolutional or deep neural 

networks. A generator network "" and a discriminator network "" are the two sub-modules that a GAN model [4] uses to 

reformulate the training process of a generative model as a supervised learning job. While the discriminator module works 

to categorize the generated samples as Real (originating from the source data domain) or Fake (fabricated samples), the 

generator module creates new samples.  These two modules are trained together in the manner of an adversarial zero-sum 

game in order to develop a GAN model [32]. In other words, in a competitive setting, the discriminator network, the 

opponent of the generator network, faces off against it. The discriminator network, the competitor of the generator network, 

attempts to distinguish between the generated samples and the training dataset samples while the generator network 

continuously generates bogus examples [4]. The ultimate objective of a GAN is to create new (fake) samples from the 

observed data that the discriminator network cannot tell apart from the genuine samples that come straight from the input 

dataset. A generator network gains knowledge during training in the form of a latent vector, which is a projection of the 

actual data distribution into a latent space. Following a successful training session, the learned latent vector is utilized to 

produce new images that closely resemble the input dataset's distribution. Furthermore, as the generator network is being 

trained, it continuously gets signals from the discriminator, which determines whether the generated samples are 

sufficiently similar to the samples from the source dataset, and adjusts its parameters accordingly. In order for the generator 

module to employ these projected points in the latent space to create new samples that are sufficiently similar to the 
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distribution of the input samples, the learned latent vector is therefore referred to as a compression of the observed input 

data during training [32]. 

Consequently, especially with complicated datasets, GANs are able to capture the broad idea of most of the input dataset. It 

is assumed that a well-trained generator can produce more normal results than abnormal ones, assuming that most of the 

input data correspond to the Normal samples. This characteristic of the GAN's discriminator and generator modules can be 

utilized to identify anomalous occurrences within a dataset. Typically, an anomaly score is measured to accomplish this 

[28]. Many GAN-based AD techniques are now widely employed in a variety of fields, including infrastructure, industry, 

medicine, and other fields . 

Generally speaking, GANs are made to produce artificial data that appears realistic, whether it is normal or abnormal. 

Therefore, the task at hand is to figure out how to apply GANs to AD directly. As previously stated, a trained GAN's 

generator module's latent space holds a high-level conceptual representation of the training data that the network is trained 

on. Finding the ideal latent space for the sample test image during the differencing process is the primary difficulty when 

using GAN on an AD job, though. This is mostly due to the lack of inverse mapping techniques from the image space to the 

latent space in standard GAN systems. The latent space and the image space have a significant association. Stated 

differently, one of the high-level characteristics of the data conveyed to the latent space is the distinction between normal 

and aberrant pictures [28]. In order to address the inverse mapping from the image space to the latent space, there is a rise 

in effort.  

The goal of GANomaly [31] is to jointly learn latent and image representations. The suggested model is composed of an 

encoder to learn the latent space representations, an adversarial auto-encoder (Encoder-Decoder) as a generator to learn 

genuine picture representations, and a discriminator sub-module to distinguish between real and fake images. To address 

learning instability, GANomaly leverages feature matching and a DCGAN architecture. In order to produce realistic-

looking images and optimize the encoding process, the model is trained using three separate losses: an adversarial loss, a 

contextual loss, and an encoder loss. In this case, the encoder loss is used to define the anomaly score. Another GAN-based 

AD model that has been suggested is called f-AnoGAN [32]. It employs a WGAN to capture more smooth representations 

by using an encoder for inverse mapping that has been trained using the generator and the discriminator following the 

training phase. While using more networks, such as encoders or decoders for GANs, may result in a more effective 

reconstruction of images, there are drawbacks to this as well. For example, training more networks means learning more 

parameters, which leads to the well-known problems of overfitting or data memorization [32]. The efficacy of GAN as an 

unsupervised anomaly detection method has been demonstrated. It has conquered several obstacles, including imbalanced 

datasets, insufficiently labeled datasets, and a deficiency of anomalous data. In the realm of medical imaging, it is 

particularly challenging to overcome these restrictions. It is still necessary to look at the success rate of GAN-based AD 

techniques on medical images. In order to further explore their potential and overcome their shortcomings in medical 

imaging anomaly identification, we carried out a number of experiments in the following section utilizing GAN-based AD 

techniques for anomaly detection on a variety of publically accessible medical imaging datasets. More precisely, we used 

two public imaging datasets—a headhaemorrhage CT images dataset and a mammography images dataset,—to test three 

different GAN-based AD techniques. 

 

Figure 1: Normal and abnormal examples of bimedical image datasets (the first row) and their reconstructed images 

by f-AnoGAN (the second row) and GANomaly (the third row) along with their predicted labels 
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METHODS 

 

In this part, we discuss the experiments we conducted using two publicly accessible medical images datasets to compare 

three DL-based AD approaches. We examined these three models' performances from two key angles: a model-centric and 

a data-centric one. To ensure a fair comparison of the approaches, these two datasets were chosen, each with unique 

characteristics. The amount of samples, picture sizes, interested organ or tissue, disease type, modality type, and features of 

the abnormality to be detected vary throughout the target datasets. On the other hand, three cutting-edge AD models—each 

with unique conceptual and structural features—are chosen for comparison [32]. Our intention in presenting these 

comparisons was to shed light on the potential obstacles that AD techniques may encounter in the field of medical imaging, 

from several angles. 

A. Collections of Data 

 

We collected two medical imaging datasets from various modalities and concentrated on various organs and tissues for our 

work. The brief description of these datasets and their specifications is as follows: 

1) CT Images of Head Haemorrhage (Head-CT) 

 

In this dataset, there are 100 2D CT single slices of a normal head and 100 2D CT image slices with evident brain 

haemorrhage in each. Every 2D slice is associated with a distinct patient. All 100 slices have the haemorrhage irregularity 

visible to the naked eye. The dimensions and pixel sizes of these photos vary [33]. 

2) MIAS-Patches-MAMMO & Mammographic Image Analysis Society (MIAS-MAMMO) 

 

The three kinds of mammography images in this collection [33] are normal, benign, and malignant. Therefore, we regarded 

both benign and malignant classes as abnormal, leaving the remaining classes as normal, in order to build the dataset for 

AD. This resulted in 207 normal images and 115 abnormal images with dimensions of 1024 x 1024. In terms of visual 

observability, this dataset differs from the previously described one because the irregularities in the photos are relatively 

modest. Based on the provided coordinates of the region of interest, an image patch of 120 by 120 pixels was extracted for 

each sample from the MIAS-Mammo dataset to create the MIAS-PATCHES-MAMMO dataset. That equates to 117 

patches of aberrant samples and 207 patches of normal images.Three unsupervised AD methods were trained on the 

medical images and they were trained on normal samples and on portion containing both normal and anomalous samples. In 

all these settings, the training set contained normal images and the test set contained both normal and anomalous images.  

RESULTS AND DISCUSSION 

 

The obtained results demonstrate that the models' performance on the Head-CT dataset, is quite low. Over fitting occurs 

when the discriminator module merely memorizes the training data during training because the training dataset is not large 

enough compared to the AD model's capability. As a result, the model will break. As a result, the produced photos become 

of worse quality. This might be a significant setback, particularly in the field of medical imaging where gathering data is a 

costly endeavor. 

Data augmentation is one potential way to address this issue and raise the resilience and performance of GANs. Research 

has shown that augmenting data for both generated and real images can improve the performance of GANs. However, if it 

had only been applied to real photos, the result might not have been the same. This suggests that data augmentation can 

help to improve the performance of the AD models even if it is performed only on the input data and not on the constructed 

data.When using GANs, the quality of the images produced by both normal and abnormal samples can be used as a 

heuristic to assess the AD model's performance and, in turn, provide an explanation for the model's final conclusion. The 

figure below shows some normal and abnormal samples from the Head-CT datasets, as well as the corresponding 

reconstructions made with the two GAN-based AD models that were looked at. CT provides a comprehensive, higher 

contrast image of the cortical bones. As was previously mentioned, it is evident that when training sizes are less, GANs 

may not be able to learn all the intricacies and will instead just be able to provide the general structure of the brain. For 

example, the cortical bone is well rebuilt in the CT pictures (Head-CT dataset), mostly because of the strong contrast of the 

region [34]. Notably, GAN was able to learn and reconstruct images with better information, especially normal samples, by 

using data augmentation just on genuine samples.  
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Figure 2: Examples of the Head-CT dataset (the first row) and their reconstructed images by f-AnoGAN (the second 

row) and GANomaly (the third row) along with their predicted labels. 

MIAS-MAMMO and MIAS-Patches-MAMMO Datasets 

 

The MIAS-Mammo dataset yielded somewhat poor performance for all three AD approaches, even with uniformly high 

image resolutions. Furthermore, in order to better handle the dispersion of anomalies in the breast tissue, we isolated 

patches from the regions of interest in the pictures due to the high resolution of the images in this dataset. Although we 

created the patches dataset with the intention of improving the AD models' accuracy, the results we got were still quite 

poor. One possibility could be that the model's capacity to fully simulate tissue composition is limited when feeding the AD 

networks with extracted patches instead of the entire slice during training, and global information may not be taken into 

account. On the MIAS-Patches-Mammo dataset, the Multi-KD technique has performed marginally better than the GAN-

based algorithms. Comparable to the findings published in [33] on this method's excellent texture AD performance on the 

MVTecAD dataset. The MIAS-Mammo and MIAS-Patches-Mammo image samples and their reconstructions are 

demonstrated with a few image examples. The diagnosis of aberrant tissue in breast cancer using mammography pictures is 

error-prone, in contrast to brain abnormalities which are generally detectable. Breast cancer is difficult to detect and 

characterize due to variation in lesion appearance.  Size, form, density, borders, subtlety, and location of lesions are among 

the critical variables that impact cancer diagnosis. Overall, these methods have not been very successful in detecting the 

abnormalities in breast cancer lesions because of their intricacy and closeness to normal tissue.In these situations, 

anomalies are conceptually and semantically related to a normal distribution and normality. Actually, the main premise of 

most AD approaches does not align with the different definition of abnormality used here. Recent research has tackled the 

problem of "near novelty" detection. 

 

Figure 3:  Normal and abnormal examples of the MIAS-Mammo, MIAS-Patches-Mammo ,dataset (the first row) and their 

reconstructed images by f-AnoGAN (the second row) and GANomaly (the third row) along with their predicted labels. 
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CONCLUSION 

 

Using medical images, this study illustrated how unreliable modern unsupervised DL-based AD techniques are. In order to 

accomplish this, we used three unsupervised DL-based AD techniques with various loss functions and structural variations 

on two sets of medical picture datasets that varied in terms of diseases, abnormalities, modalities, and sample counts. As a 

result, we created an essentially exhaustive comparison between various techniques and demonstrated how their efficacy 

could differ depending on the type of medical imaging, which provided some useful information. The current issues were 

thoroughly examined from the perspectives of the model and the data. Overall, none of the techniques worked well enough 

to be applied in clinical settings. We ascribe this to difficulties with the generalizability of AI techniques as well as the 

variety of abnormalities in the field of biomedical imaging. Our research demonstrated that, in addition to the processes 

behind the chosen AD techniques, the effects of aberrant characteristics should be carefully taken into account. It is advised 

to take into account a number of factors when designing and developing AD algorithms for medical images, including the 

degree of subtlety of the anomaly, its spread, tissue-related anomalies like blood cell cancers or breast cancer in 

mammography images, and imaging modalities where the contrast difference between the abnormal and normal regions is 

comparable. Therefore, there is an urgent need for greater research and the implementation of more reliable, trustworthy, 

and generalizable AD models. 
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